
R Development Guide

collaboratively authored by the

R Contribution Working Group

R Development Guide. This illustration is created by Scriberia with The Turing Way
community, used under a CC-BY 4.0 licence. DOI: https://zenodo.org/records/13882307

R Development Guide

R Contribution Working Group

2025-04-29

Table of contents

Acknowledgement 6

1 Introduction 8
1.1 Overview of different ways of contributing to the base R Project 8
1.2 Quick start to the guide . 8
1.3 How to contribute to this guide itself? . 9

2 R Patched and Development Versions 11
2.1 The R source code . 11
2.2 Prerequisites . 12

2.2.1 Ubuntu . 12
2.2.2 Fedora . 12

2.3 Building R . 12
2.3.1 Linux . 13
2.3.2 Windows . 14
2.3.3 macOS . 16

2.4 See also . 16

3 Issue Tracking 17
3.1 How to contribute to issue tracking? . 17
3.2 How to get a Bugzilla account? . 17

3.2.1 Navigating Bugzilla . 17
3.3 Searching for Bugs to Contribute to . 19

3.3.1 Detailed Bug Information . 21
3.3.2 Search By People . 22
3.3.3 Search By Change History . 22

4 Reporting Bugs 23
4.1 What is a bug in R? . 23
4.2 What condition might not be a bug? . 24
4.3 Checking if a bug is already reported . 24
4.4 What are some places where you may find a bug? 25
4.5 How to report a bug? . 25

4.5.1 Bug in the R-Core supported packages, their documentations, and/ or
in the R language . 25

4.5.2 Bug in the non R-Core supported packages and/or their documentations 25

2

4.5.3 Bug in a documentation website managed by the R Core Team 26
4.6 Good practices in reporting bugs / Expectations of a good bug report 26
4.7 Disagreement with a resolution on the bug tracker 27
4.8 Examples of Bug reports submitted on Bugzilla or R-devel mailing list 27
4.9 See also . 28

5 Submitting Feature Requests 29
5.1 What is a feature request? . 29
5.2 How to submit a feature request? . 29
5.3 Examples of feature requests submitted on Bugzilla 30

6 Reviewing Bugs 31
6.1 How you can help to review bug reports? . 31

6.1.1 Preparing to review bug reports . 31
6.2 Classifying bug reports . 31
6.3 How to find a bug report or an issue to review? 32
6.4 Example of a bug review submitted on Bugzilla 32
6.5 See also . 32

7 Finding the Source 33
7.1 Finding R source code . 33
7.2 Finding C source code . 34
7.3 See also . 35

8 Lifecycle of a Patch 36
8.1 Introduction . 36
8.2 When do you submit a patch? . 36
8.3 What tools are required to submit a patch? . 36
8.4 How to prepare a patch? . 37

8.4.1 Using a git mirror . 37
8.5 Making good patches . 41
8.6 Submitting your patch for review . 42

8.6.1 Patch in response to a pre-existing issue or bug report 42
8.6.2 Patch in response to an unreported issue or bug report 43

8.7 Getting your patch reviewed . 43
8.7.1 How to review a patch? . 43

8.8 Leaving a patch review on Bugzilla . 44
8.9 Dismissing review from another core developer 44
8.10 Acceptance or rejection of your patch . 45
8.11 Examples of patch reports on Bugzilla . 45
8.12 Examples of reviewing a patch . 45
8.13 See also . 45

3

9 Documenting 46
9.1 Helping with documentation . 46
9.2 Reporting documentation bugs . 47

9.2.1 Example documentation bugs . 47
9.3 Guidelines for writing R help files . 47
9.4 Introduction to .Rd files . 48
9.5 R manuals . 51
9.6 Proofreading . 51
9.7 Helping with the R Development Guide . 52
9.8 See also . 52

10 Message Translations 53
10.1 How translations work . 53

10.1.1 .pot files . 53
10.1.2 .po files . 54
10.1.3 .mo files . 56

10.2 How to contribute new translations . 56
10.3 Bulk Translations . 60
10.4 Current status of translations in R . 61
10.5 Helpful references . 61

11 Testing Pre-release R Versions 62
11.1 Where to test? . 62

11.1.1 Virtual machine . 62
11.2 What can you test? . 62
11.3 Writing tests for R . 63
11.4 Benchmarks . 63

12 Where to Get Help 64
12.1 Slack . 64
12.2 Mailing lists . 65
12.3 File a bug . 65

13 News and Announcements 66
13.1 Blogs . 66
13.2 Conferences . 66
13.3 Journal . 66
13.4 Mailing lists . 66
13.5 Twitter . 67

14 Developer Tools 68
14.1 Subversion (svn) client . 68
14.2 Globally search for a regular expression and print matching lines (grep) 68

4

14.3 Git . 68
14.4 GitHub . 69

15 Additional resources 70
15.1 R Contributor site . 70
15.2 R developer page . 70
15.3 R manuals . 70

16 R Core Developers 71

5

Acknowledgement

Figure 1: R Development Guide. This illustration is created by Scriberia with
The Turing Way community, used under a CC-BY 4.0 licence. DOI:
https://zenodo.org/records/13882307

This guide draws on documentation and articles written by the R Core Team. The first version
of the guide was heavily influenced by the Python Developer’s Guide.

Initial chapters of the guide were developed by Saranjeet Kaur Bhogal, in a project funded by
the R Foundation, mentored by Heather Turner and Michael Lawrence. This initial version
was upgraded in a Google Season of Docs 2022 project with Saranjeet Kaur Bhogal and Lluís
Revilla Sancho working as technical writers managed by Nicolas Bennett and overseen by a
Steering Committee including representatives from R Core and the wider R community.

6

https://devguide.python.org/
https://github.com/rstats-gsod/gsod2022/wiki/GSOD-2022-Proposal
https://github.com/rstats-gsod/gsod2022/wiki/GSOD-2022-Proposal#steering-committee

This guide has benefited and continues to benefit from varied contributions by several contrib-
utors.

Figure 2: License: CC BY 4.0

This project is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0).
Some pages may contain materials that are subject to copyright, in which case you will see
the copyright notice.

7

https://github.com/r-devel/rdevguide#contributors-
https://github.com/r-devel/rdevguide#contributors-
https://creativecommons.org/licenses/by/4.0/

1 Introduction

This guide is a comprehensive resource for contributing to base R1 – for both new and expe-
rienced contributors. It is maintained by the R Contribution Working Group. We welcome
your contributions to base R!

1.1 Overview of different ways of contributing to the base R
Project

Contributions to base R are possible in a number of different ways. Some of them are listed
below:

1. Contributing to bug fixing: Refer to Issue Tracking and Reviewing Bugs.
2. Contributing to translations: Refer to Translations.
3. Testing R before release: Refer to Testing Pre-release R Versions.
4. Contributing to documentation, including this guide: Refer to Documenting R and Con-

tributing to this guide.

1.2 Quick start to the guide

The guide is intended as a comprehensive resource for contributing to base R. The following
chapter outline provides an overview with links to sections for getting started with contribut-
ing.

• The Introduction chapter provides an overview of different ways of contributing to the
R project, a quick start to the guide, and a section on how to contribute to the guide
itself.

• The R Patched and Development Versions chapter covers instructions on how to install
R from source or from binaries and also discusses the tools required to build R.

• The Issue Tracking chapter covers how contributors can support issue tracking in R,
how to get an account on R’s Bugzilla, how to navigate Bugzilla and search for bugs to
contribute to.

1The set of packages in the base R distribution that are maintained by the R Core Team.

8

https://cran.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-in-R

• The Reporting Bugs chapter discusses what condition may or may not be a bug and how
to report bugs if you find them.

• The Submitting Feature Requests chapter discusses how to submit feature requests and
shares some examples submitted to Bugzilla.

• The Reviewing Bugs chapter discusses how you can make a contribution to reviewing
bug reports.

• The Finding the Source chapter provides an overview of the R codebase and helps with
finding source code of base functions written in R and/or C.

• The Lifecycle of a Patch chapter discusses how to create a patch to propose a bug fix.

• The Documenting chapter describes the format and style guide for help files in R, how
to report and review issues in the existing documentation, and how to propose changes.

• The Message Translations chapter covers internationalization in R, i.e., the display of
messages in languages other than English.

• The Testing Pre-release R Versions chapter discusses how you can help with testing of
pre-release versions of R.

• For more information on how to engage with the community and ask for help, refer to
the Where to Get Help chapter.

• To keep up with the developments in R refer to the resources available in the News and
Announcements chapter.

• Tools that may be useful for R developers are available in the Developer Tools chapter.

• Additional resources for contributing to R are available in the Additional Resources
chapter.

• The R Core Developers chapter contains a list of the former and current members of the
R Core Team who have write access to the R source.

1.3 How to contribute to this guide itself?

All contributors should start by reading the contributing page for this project.

Maintainers and contributors are also requested to follow this guide’s code of conduct.

This guide is built using Quarto which makes editing it easier, provided you have a GitHub
account (sign-up at github.com). After you log-in to GitHub, click on the ‘Edit this page’
(available in the left side column) link highlighted with a red ellipse in the image below. This
will take you to an editable version of the the source R Markdown file that generated the page
you are on:

9

https://github.com/r-devel/rdevguide/blob/main/CONTRIBUTING.md
https://github.com/r-devel/rdevguide/blob/main/CONDUCT.md
https://github.com/

Figure 1.1: Screenshot of the toolbar in the HTML version of the guide, with the “Edit this
page” link highlighted in red.

Use the issue tracker to raise an issue about the guide’s content or to make a feature request.

10

https://github.com/r-devel/rdevguide/issues

2 R Patched and Development Versions

These instructions cover how to install R from source or from binaries. Contributors will
typically need to work with the patched or development versions of R. This chapter describes
where the source code for these versions can be found and how to install these versions from the
source or the binary builds (where available). The tools required to build R and R packages
are also discussed. For the most up to date and complete instructions you can check the R
installation and administration manual .

2.1 The R source code

R uses svn as a version control tool hosted at https://svn.r-project.org/R/ and uses a ‘ma-
jor.minor.patchlevel’ version numbering scheme1.

There are three releases of R available to install:

• The latest official release (r-release), either major version x.0.0 or minor version x.y.0,
for example: 3.0.0 or 3.2.0

• The patched release (r-patched), for example 3.0.1 or 3.2.1 and

• The development release (r-devel) : continually developed version moving from r-release
to next major/minor version (x + 1).0.0 or x.(y + 1).0 a few weeks before release (at
the start of the “GRAND FEATURE FREEZE”).

The source code of released versions of R can be found at R/tags, the patched versions are at
R/branch.

The r-devel at R/trunk is the next minor or eventual major release development version
of R. Bug fixes and new features are introduced in r-devel first. If the change meets the
development guidelines R Core will also make the change in r-patched.

1Also known as semantic versioning

11

https://cran.r-project.org/doc/manuals/r-devel/R-admin.html
https://cran.r-project.org/doc/manuals/r-devel/R-admin.html
https://subversion.apache.org/
https://svn.r-project.org/R/
https://svn.r-project.org/R/tags/
https://svn.r-project.org/R/branches/
https://svn.r-project.org/R/trunk
https://developer.r-project.org/devel-guidelines.txt
https://en.wikipedia.org/wiki/Software_versioning#Semantic_versioning

2.2 Prerequisites

To install from the source code you will need the source code and the dependencies of R.

If you need to install svn you can use your distribution’s package manager to install it.

2.2.1 Ubuntu

In Ubuntu you can use this command to find all the dependencies of R:

apt-rdepends --build-depends --follow=DEPENDS r-base-dev | grep " B" | sed -e "s/ Build-Depends: //"

It might require installation of apt-rdepends which can be done from default repositories via
sudo apt-get install apt-rdepends.

To install all the R dependencies you can use:

sudo apt-get build-dep r-base-dev

2.2.2 Fedora

In Fedora you can use this command to find all the dependencies of R:

dnf rq -q --repo=fedora-source --requires R

You will also need the rsync package to download the recommended packages.

To install them you can use:

dnf install 'dnf-command(builddep)'
dnf install rsync
dnf builddep R

2.3 Building R

It is recommended to build R in a different path than the source. For this reason we have a
TOP_SRCDIR variable where the source code goes and the variable BUILDDIR where the built R
version will go.

12

2.3.1 Linux

Here are the basic steps intended as a checklist. For complete instructions please see the
section in R-admin.

0. Retrieve R source code via into TOP_SRCDIR, note that we retrieve the r-devel source
code:
export TOP_SRCDIR="$HOME/Downloads/R"
svn checkout https://svn.r-project.org/R/trunk/ "$TOP_SRCDIR"

1. Download the latest recommended packages2:
"$TOP_SRCDIR/tools/rsync-recommended"

2. Create the build directory in the BUILDDIR:
export BUILDDIR="$HOME/bin/R"
mkdir -p "$BUILDDIR"
cd "$BUILDDIR"

3. Configure the R installation (with --enable-R-shlib so that RStudio IDE can use it):
"$TOP_SRCDIR/configure" --enable-R-shlib

4. Build R :
make

5. Check that R works as expected:
make check

There are other checks you can run:
make check-devel
make check-recommended

If we don’t want to build R in a different directory than the source code we can simply use:

cd "$TOP_SRCDIR"
svn update
tools/rsync-recommended
"$TOP_SRCDIR/configure" --enable-R-shlib
make
make check

2Recommended packages are not in the subversion repository.

13

https://cran.r-project.org/doc/manuals/r-devel/R-admin.html#Installing-R-under-Unix_002dalikes

Once you successfully built R from source you can modify the R source code to fix an is-
sue: Prepare a patch (See this guide) and after checking that R works as intended (make
check-devel) submit the patch for consideration by R Core. (See the lifecycle of a patch
chapter).

To use the r-devel version in RStudio, you can do the following:

export RSTUDIO_WHICH_R="$BUILDDIR/bin/R"
cd "$TOP_SRCDIR"
rstudio

2.3.2 Windows

2.3.2.1 Binaries

The binary builds of R for Windows can be downloaded and installed from here. Along with the
link to the latest stable release, this page also contains links to the binary builds of r-patched
and r-devel.

1. Click on the download links to download an executable installer.

2. Select the language while installing, read the GNU general public license information,
and select the destination location to start the installation. You will be prompted to
select components at this stage: User installation, 64-bit User installation, or
Custom installation. The default option may be chosen for the questions from this
step onwards to complete the installation.

Daily binaries for r-devel are made available for download and installation.

2.3.2.2 From source

Before installing R from source, some additional programs are needed, as per the latest docu-
mentation:

1. Rtools is the suggested toolchain bundle for building R base and R packages containing
compiled code on Windows. The latest version of Rtools can be installed using the Rtools
installer rtools44-XXXX-XXX.exe.

2. A LaTeX compiler is needed to install and build R, check packages and build manuals.
On CRAN, MiKTeX is used, which can be downloaded from https://miktex.org. Once
installed open MiKTeX via the Windows start menu. It might ask to check for updates
and more importantly, to make it available in PATH. You can accept both.

14

https://www.r-project.org/bugs.html#how-to-submit-patches
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/rdevel.html
https://cran.r-project.org/bin/windows/base/howto-R-4.2.html
https://cran.r-project.org/bin/windows/base/howto-R-4.2.html
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/rtools44/rtools.html
https://cran.r-project.org/bin/windows/Rtools/rtools44/files/
https://cran.r-project.org/bin/windows/Rtools/rtools44/files/
https://miktex.org

3. Open the Rtools44 terminal to update and install subversion:
pacman -Syuu
pacman -Sy wget subversion

4. Retrieve the latest source code via subversion:
export TOP_SRCDIR="$HOME/Downloads/R"
svn checkout https://svn.r-project.org/R/trunk/ "$TOP_SRCDIR"

If you already have the repository available you can update as:
cd $TOP_SRCDIR
svn update

You can also use a SVN client such as TortoiseSVN (https://tortoisesvn.net/, com-
mand line tool, and Windows Explorer integration) or SlikSVN (https://sliksvn.com/
download/, just the command line tool) so that it can be also found by other tools.

5. Download the latest tcl/tk and unzip it in $TOP_SRCDIR:
cd "$TOP_SRCDIR"
wget -np -nd -r -l1 -A 'tcltk-*.zip' https://cran.r-project.org/bin/windows/Rtools/rtools44/files/
unzip "tcltk-*.zip"

6. Add gcc, MiKTeX and tar to the PATH and set one tar option:
export PATH="/x86_64-w64-mingw32.static.posix/bin:$PATH"
export PATH="/c/Program Files/MiKTeX/miktex/bin/x64:$PATH"
export TAR="/usr/bin/tar"
export TAR_OPTIONS="--force-local"

If MiKTeX was installed just for your user you might need to run:
export PATH="/c/Users/$USER/AppData/Local/Programs/MiKTeX/miktex/bin/x64:$PATH"

7. Check that all the programs can be found:
which make gcc pdflatex tar

If there is any error you’ll need to find where the program is installed and add the
corresponding path.

8. Download the latest recommended packages3:
cd "$TOP_SRCDIR/src/gnuwin32/"
"$TOP_SRCDIR/tools/rsync-recommended"

3Recommended packages are not in the subversion repository.

15

https://tortoisesvn.net/
https://sliksvn.com/download/
https://sliksvn.com/download/

9. Build R and the recommended packages:
make all recommended

The recently compiled version of R will be at $TOP_SRCDIR/bin/. In RStudio you can
select that folder and restart it to use the r-devel version.

10. Check that R works as expected:
make check

There are other checks you can run for testing the successful installation of the recom-
mended packages:
make check-devel
make check-recommended

2.3.3 macOS

This section will be added after the official installation instructions for macOS in the R instal-
lation and administration manual have been updated for R 4.4.0.

2.4 See also

1. CRAN official website

2. R installation and administration manual

3. R for macOS

4. Tools for R in macOS

5. R for requirements in macOS

6. R for Windows FAQ

7. RTools toolchains for Windows

8. R FAQ

16

https://cran.r-project.org/doc/manuals/r-devel/R-admin.html#macOS
https://cran.r-project.org/doc/manuals/r-devel/R-admin.html#macOS
https://cran.r-project.org
https://cran.r-project.org/doc/manuals/r-patched/R-admin.html
https://mac.r-project.org/
https://mac.r-project.org/tools/
https://mac.r-project.org/src/
https://cran.r-project.org/bin/windows/base/rw-FAQ.html
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/doc/FAQ/R-FAQ.html

3 Issue Tracking

Base R uses Bugzilla for issue tracking and reporting bugs.

3.1 How to contribute to issue tracking?

Contributors can support issue tracking in R by

1. Reporting bugs or submitting feature requests (bug reports filed under the “Wishlist”
component in Bugzilla),

2. Reviewing bug reports to help close reports where no fix is needed or to help narrow
down the problem and identify what needs to be fixed, or

3. Proposing changes to code or documentation that will close an issue.

3.2 How to get a Bugzilla account?

Anyone can browse the bug reports on Bugzilla, but you will need an account to file a bug
report, to comment on an existing bug report, or to submit a proposed fix in the form of patch
file.

To get a Bugzilla account send an e-mail to bug-report-request@r-project.org from the
address you want to use as your Bugzilla login. Briefly explain why you want a Bugzilla account
and a volunteer will add you to R’s Bugzilla members. After having successfully logged in to
Bugzilla, you are good to go.

3.2.1 Navigating Bugzilla

An image of the existing home page of Bugzilla is shared below:

17

https://bugs.r-project.org/
reviewing_bugs.qmd
lifecycle_of_a_patch.qmd

Figure 3.1: Screenshot of the existing home page of Bugzilla.

On the home page of Bugzilla, there are various buttons and links. There are four square
buttons called as:

Figure 3.2: Screenshot of the four square buttons on the home page of Bugzilla.

18

1. File a bug: You will have to log in to Bugzilla to file a bug using this button

2. Search: When you click this button you will get a page with ‘Simple Search’ and ‘Ad-
vanced Search’ options. Either of the search options could be used depending on what
you are looking for.

3. Log In: Provide the appropriate email address and password here to log in to Bugzilla.

4. Documentation: Provides a user guide for R's Bugzilla.

Several useful shortcuts are available from the landing page:

1. Enter a new bug report

2. Show open bugs new-to-old

3. Search existing bug reports

A quick search bar is available on the home page where you can enter a bug number to search
or some search terms.

Figure 3.3: Screenshot of the quick search bar on the home page of Bugzilla.

There is also a section for Common Queries on the home page which includes links to bugs
reported and changed in the last 24 hours and last 7 days.

Figure 3.4: Screenshot of the Common Queries section on the home page of Bugzilla.

3.3 Searching for Bugs to Contribute to

When presented with a long list of bugs, it can often be a bit demotivating when it’s not clear
where to start. To help with this, you can use the Advanced Search.

19

https://bugs.r-project.org/enter_bug.cgi
https://bugs.r-project.org/query.cgi
https://bugs.r-project.org/?GoAheadAndLogIn=1
https://bugzilla.readthedocs.io/en/latest/using/index.html
https://bugs.r-project.org/enter_bug.cgi
https://bugs.r-project.org/buglist.cgi?bug_file_loc_type=allwordssubstr&bug_status=NEW&bug_status=ASSIGNED&bug_status=CONFIRMED&bug_status=REOPENED&bug_status=UNCONFIRMED&bugidtype=include&chfieldto=Now&cmdtype=doit&emailassigned_to1=1&emailassigned_to2=1&emailcc2=1&emailreporter2=1&emailtype1=substring&emailtype2=substring&field0-0-0=noop&long_desc_type=substring&order=bugs.delta_ts%20desc&query_format=advanced&short_desc_type=allwordssubstr&type0-0-0=noop
https://bugs.r-project.org/query.cgi
https://bugs.r-project.org/page.cgi?id=quicksearch.html
https://bugs.r-project.org/query.cgi?format=advanced

Figure 3.5: Screenshot of Advanced Search page showing the following fields: Summary, Prod-
uct, Component, Status, Resolution

This presents several fields that you can use to narrow down your search. You can find out
what a particular field is by clicking on the header, which will take you to that section in the
Bug Fields Information Page.

The default fields are:

• Summary: a short description of the bug
• Product: either R or RTools.
• Component: A specific component of the R toolchain such as Graphics, Documentation,

and Models
• Status: The status of open or closed bugs. This will always default to showing open

bugs (UNCONFIRMED, CONFIRMED, and IN_PROGRESS)
• Resolution: The resolution for closed bugs.

You can select multiple items for each field as well. Both Product and Component are what
you navigate through when you go to Browse Issues.

Below that are further filters that can help you find bugs you might want to work on:

20

https://bugs.r-project.org/page.cgi?id=fields.html
https://bugs.r-project.org/page.cgi?id=fields.html#short_desc
https://bugs.r-project.org/page.cgi?id=fields.html#product
https://bugs.r-project.org/page.cgi?id=fields.html#component
https://bugs.r-project.org/page.cgi?id=fields.html#bug_status
https://bugs.r-project.org/page.cgi?id=fields.html#resolution
https://bugs.r-project.org/describecomponents.cgi

Detailed Bug Information: Narrow results by the following fields Comments, URL, Key-
words, Deadline, Bug Numbers, Version, Severity, Priority, Hardware, OS Search By
People
Narrow results to a role (i.e. Assignee, Reporter, Commenter, etc.) a person has on a
bug Search By Change History
Narrow results to how fields have changed during a specific time period Custom Search
Didn’t find what you’re looking for above? This area allows for ANDs, ORs, and other
more complex searches.

These will be detailed in the subsections below

3.3.1 Detailed Bug Information

You can use this section to narrow down your search further to filter by things like OS type,
R version, Keywords, and Priority.

It can be helpful, for example, to search for bugs labelled with HELPWANTED, which indicates
bugs that may be suitable for anyone to work on regardless of expertise.

Figure 3.6: Screenshot of expanded Detailed Bug Information section showing the following
fields: Comment, URL, Keywords (with HELPWANTED entered), Deadline, in-
clusion/exclusion of bug numbers, Version, Severity, Priority, Hardware, and OS

21

3.3.2 Search By People

You can use this to narrow down your search to only include results of a specific person or up
to three people who have participated in any component of the bug’s discussion.

Figure 3.7: Screenshot of expanded Search By People section showing three fields allowing you
to enter a person’s name who can be any of the bug assignee, the reporter, a CC
list member, or a commenter

3.3.3 Search By Change History

Use this to search for bugs where any of the status fields has been changed (which, depending
on the change, could indicate that someone from R-Core has given some attention to the bug).
This also provides a date range to narrow your search.

Figure 3.8: Screenshot of expanded Search by Change History section showing three fields:
where ANY of the fields (multi-select list), changed to, and between (dates in
YYYY-MM-DD format)

22

4 Reporting Bugs

4.1 What is a bug in R?

You may find a bug in R if:

1. The R session terminates unexpectedly, or there is a segmentation fault, it might be a
bug in R, unless you have written your own call to compiled code or an internal function
(via .C or .Internal). The error may look like this:

*** caught segfault ***
address (nil), cause 'memory not mapped'

2. If the code does not do what the documentation says it should, then either the code or
the documentation is wrong. Report either of which needs to be fixed.

Note: When you are in doubt that there is a bug: (which should be the case most of the
time!)

1. Make sure whether the bug appears in a clean session of R. Many times, there are
variables/commands/functions stored in the workspace which might cause issues. Hence,
check if the issue happens in a clean session. To do so, launch R from the command line
with the --vanilla option.

2. At times the code that is written is very complicated, has numerous package and file
dependencies, has many function calls, etc.. In such scenarios it is quite common that
the code throws an error and you are not able to solve it. You may tend to think that
there is a bug that needs to be reported. Before doing so, try to produce a minimum
working example of the code for the section where the error occurred. Add only those
packages and files which are required by that section, and see if the error still appears.
Using this approach shall solve most of the errors.

3. Install R-devel, which is the most recent version of R from svn / git or daily Windows
build, and see if your bug still exists in R-devel (it may have been fixed very recently).

23

https://svn.r-project.org/R/trunk/
https://github.com/r-devel/r-svn
https://cran.r-project.org/bin/windows/base/rdevel.html
https://cran.r-project.org/bin/windows/base/rdevel.html

4. Search on the R-devel mailing list for messages with keywords related to your possible
bug. If you find some related messages then read them to see if they clarify whether or
not it is a bug. If you do not find any related messages, then please post a new message
to R-devel. Your message should include (1) a brief description of the bug including
current and expected behavior, (2) a minimal reproducible example.

4.2 What condition might not be a bug?

1. In case the code is doing something unexpected, it may not necessarily be a bug. Care-
fully review the documentation of the function being called, and check whether the
behaviour being exhibited on calling this function is the same as it was designed to do.

2. Issues with seemingly identical numbers not being equal (especially floating point num-
bers) are usually not bugs.

3. If R is running slower than expected, then this also may not be a bug. Ask someone else
to review your code in such a case.

4. If some function is working, but it is not defined in the best generalised way, then consult
someone to look over the code. This may perhaps not be a bug; instead, it might be an
alternative way of writing the function.

4.3 Checking if a bug is already reported

The first step before filing a bug report is to see whether the problem has already been reported.
Checking if the bug is reported will:

1. Save time for you and the developers.

2. Help you see if the bug is already fixed for the next release.

3. Lead you to learn what needs to be done to fix it.

4. Determine if any additional information is needed.

The sections that follow discuss where to check whether a bug is already reported.

24

https://www.mail-archive.com/r-devel@r-project.org/index.html
https://www.mail-archive.com/r-devel@r-project.org/index.html
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-doesn_0027t-R-think-these-numbers-are-equal_003f

4.4 What are some places where you may find a bug?

You may find a bug in:

1. In the R-Core supported packages, their documentations, and/ or in the R language
implementation.

2. In packages and/or their documentations which are not supported by the R-Core.

4.5 How to report a bug?

Once you confirm a bug exists, you need to submit a bug report so that it gets fixed.

4.5.1 Bug in the R-Core supported packages, their documentations, and/ or in
the R language

1. Packages that are supported by the R-Core are labelled with Maintainer: R Core Team
<R-core@r-project.org>. One simple way to get the information from R is by running
the maintainer("package_name") command.

2. The bug report for R-Core supported packages, their documentations, and/ or a bug
report for the R language itself can be submitted either to R-devel, see posting guide, or
to Bugzilla. In the future, we hope to have an option to report an issue to the GitHub
Mirror of the R svn server.

3. In order to report bugs, as well as fixes, using Bugzilla, please ensure that you have a
Bugzilla account

4. Please ensure whether the bug is already fixed (in the upcoming changes in R) or reported
(search for it from those already reported on Bugzilla, either on search existing bug
reports, using the advanced search option here, or show open bugs new-to-old).

4.5.2 Bug in the non R-Core supported packages and/or their documentations

For packages that are not maintained by the R-Core, the bug reports can be submit-
ted at, perhaps, an issues tracker url on GitHub/GitLab/R-Forge. To find if such an
issues tracker is available, you can look at the package DESCRIPTION file first (e.g. using
packageDescription("package_name")) to check if a url is provided in the BugReports
field. If that is not available, then the package maintainer can be contacted (using
maintainer("package_name")). In R running the function bug.report(package =
"package_name") shall direct you to either the GitHub issue tracker of the package, or

25

https://www.r-project.org/posting-guide.html#which_list
https://bugs.r-project.org/bugzilla/
https://github.com/r-devel/r-svn/issues
https://github.com/r-devel/r-svn/issues
https://bugs.r-project.org/bugzilla/query.cgi
https://bugs.r-project.org/bugzilla/query.cgi
https://bugs.r-project.org/bugzilla/query.cgi?format=advanced
https://bugs.r-project.org/bugzilla/buglist.cgi?bug_file_loc_type=allwordssubstr&bug_status=NEW&bug_status=ASSIGNED&bug_status=CONFIRMED&bug_status=REOPENED&bug_status=UNCONFIRMED&bugidtype=include&chfieldto=Now&cmdtype=doit&emailassigned_to1=1&emailassigned_to2=1&emailcc2=1&emailreporter2=1&emailtype1=substring&emailtype2=substring&field0-0-0=noop&long_desc_type=substring&order=bugs.delta_ts%20desc&query_format=advanced&short_desc_type=allwordssubstr&type0-0-0=noop

to the bug tracking web page, or towards composing an e-mail to the package main-
tainer. This function bug.report is disabled in RStudio, by default. However, if you use
utils::bug.report(package = "package_name") then it works on RStudio as well. Please
ensure that the bug is not already reported or fixed before reporting it in any of the ways
suggested above.

4.5.3 Bug in a documentation website managed by the R Core Team

The R Core Team maintain a selection of websites that each have their own ways for reporting
issues outside of Bugzilla. Have a read through the posting guide for R project mailing lists
and then follow the instructions below to give feedback to the maintainers.

• R FAQ contains answers to some of the most frequently asked questions about R. Feed-
back on the R FAQ should be sent to the R-devel mailing list via R-devel@R-project.org.

• R for Windows FAQ contains answers specific to the Windows port of R. Feedback on
the Windows FAQ should be sent to the R-SIG-windows mailing list (the Special Interest
Group for Windows), via R-windows@R-project.org.

• R for macOS FAQ contains a user guide to the R.APP version of R and information on
using R on macOS, supplementing the main R manuals. Feedback on the macOS FAQ
should be sent to the R-SIG-Mac mailing list (the Special Interest Group for Mac ports
of R), via r-sig-mac@r-project.org.

• Feedback on the R Project website should be sent to webmaster@r-project.org.
• Feedback on the website for The Comprehensive R Archive Network (CRAN) should be

sent to cran-sysadmin@r-project.org.

4.6 Good practices in reporting bugs / Expectations of a good bug
report

If you follow the practices given below, you will come up with a good bug report which might
make it easier for the maintainer(s) to fix the bug.

1. Include a minimal reproducible example of the bug in your report. The maintainer should
be able to quickly reproduce the bug using the minimal example that you provide. Here
is a community wiki post on how to make a minimal reproducible example.

2. Mention the software architecture on which the bug occurred.

3. Use inbuilt data sets as far as possible.

In addition to the above, here are the bug writing guidelines on Bugzilla. The bug reporting
documentation in R also discusses practices to write a good bug report.

26

https://www.r-project.org/posting-guide.html
https://cran.r-project.org/doc/FAQ/R-FAQ.html
https://stat.ethz.ch/mailman/listinfo/r-devel
mailto:R-devel@R-project.org
https://cran.r-project.org/bin/windows/base/rw-FAQ.html
https://stat.ethz.ch/mailman/listinfo/r-sig-windows
mailto:R-windows@R-project.org
https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html
https://stat.ethz.ch/mailman/listinfo/r-sig-mac
mailto:r-sig-mac@r-project.org
https://www.r-project.org/
mailto:webmaster@r-project.org
https://cran.r-project.org/
mailto:cran-sysadmin@r-project.org
https://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example
https://bugs.r-project.org/bugzilla/page.cgi?id=bug-writing.html
https://www.r-project.org/bugs.html#writing-a-good-bug-report

Once you have successfully reported a bug, you will likely receive an update each time an
action is taken on the bug. On Bugzilla, the report may be given one of the following status:
New, Assigned, Confirmed, Reopened, Unconfirmed.

4.7 Disagreement with a resolution on the bug tracker

As humans, there might be differences of opinions from time to time. What needs to be
considered here is to be respectful of the fact that care, thought, and volunteer time has gone
into the resolution of the issue or bug.

If you take some time, then on reflection, the resolution steps may seem more reasonable than
you initially thought. If you still feel that the resolution is incorrect, then raise a thoughtful
question to the person who resolved it. If the issue was not carefully thought about in the first
place then it is less likely to win any conversion of thought.

As a reminder, issues closed by a core developer on Bugzilla have already been carefully
considered. Please do not reopen a closed issue. Although one can comment on a closed issue,
if necessary. Every comment on an issue generates an email to every R-core member (unless
they have the notifications disabled). So it would be best to be considerate while commenting
on issues, especially in case of closed issues or when you are commenting in pure agreement
without adding anything beyond that to a discussion (the +1 type posts which are perfectly
acceptable in other contexts).

4.8 Examples of Bug reports submitted on Bugzilla or R-devel
mailing list

If you like to see how bugs are reported on Bugzilla, here are some examples:

1. Bug 17767 - Warning about incomplete argument within nlme: A bug report with a
reproducible example, a patch, and a review.

2. Possible bug when finding shared libraries during staged installation: A bug report
submitted by Kara Woo which was promptly fixed via the R-devel mailing list. (More
information about the R-devel mailing list can be found here).

3. Bug: time complexity of substring is quadratic as string size and number of substrings
increases: A substring reported by Toby Dylan Hocking and fixed by Tomas Kalibera,
Feb 2019 via the R-devel mailing list.

4. patch for gregexpr(perl=TRUE): A gregexpr bug report and patch submitted by Toby
Dylan Hocking and merged by Tomas Kalibera, Feb 2019 via the R-devel mailing list.

27

https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17767
https://stat.ethz.ch/pipermail/r-devel/2019-May/077855.html
https://stat.ethz.ch/mailman/listinfo/r-devel
https://stat.ethz.ch/pipermail/r-devel/2019-February/077393.html
https://stat.ethz.ch/pipermail/r-devel/2019-February/077393.html
https://stat.ethz.ch/pipermail/r-devel/2019-February/077315.html

4.9 See also

1. Reporting a bug

2. R FAQ on bugs

3. Bugzilla guidelines of reporting a bug

28

https://www.r-project.org/bugs.html
https://mac.r-project.org/man/R-FAQ.html#R-Bugs
https://bugs.r-project.org/bugzilla/page.cgi?id=bug-writing.html

5 Submitting Feature Requests

5.1 What is a feature request?

A feature request is a suggestion or proposal to add new functionality or improve an existing
feature.

We recommend sharing your feature request idea on the R-devel mailing list and gaining
support from R-Core members and other users to increase its likelihood of acceptance.

5.2 How to submit a feature request?

You can submit a feature request by filing a bug on Bugzilla. Under Component, select
“Wishlist”, the designated label for feature requests.

Figure 5.1: The “Wishlist” component in Bugzilla’s bug submission screen.

Similar to bugs, you should ensure that the feature request is not already reported and follow
best practices whenever possible.

29

https://stat.ethz.ch/mailman/listinfo/r-devel
https://bugs.r-project.org/enter_bug.cgi

5.3 Examples of feature requests submitted on Bugzilla

If you like to see how feature requests are reported on Bugzilla, here are some examples:

1. Bug 18690 - Increase CONSOLE_BUFFER_SIZE and / or warn if input is truncated:
A feature request to ease the readability of long lines.

2. Bug 17912 - ordering elements in sessionInfo() by alphabetical order: A feature request
that was not accepted due to the prioritization of load time in session information.

30

https://bugs.r-project.org/show_bug.cgi?id=18690
https://bugs.r-project.org/show_bug.cgi?id=17912

6 Reviewing Bugs

6.1 How you can help to review bug reports?

After understanding where bugs are reported in R (Bugzilla) or in other projects
(GitHub/GitLab/R-Forge), a great way to contribute is reviewing bug reports.

Around the clock, new bug reports are being submitted on Bugzilla or the bug trackers (for
instance, GitHub issues) of R packages and existing bug reports are being updated. Every
bug report needs to be reviewed to make sure various things are in proper order. You can help
with this process of reviewing bugs.

6.1.1 Preparing to review bug reports

If you want to review bug reports on Bugzilla, you are required to have a Bugzilla account.
More details on how you can review a bug report are available on this post on the R Blog: R
Can Use Your Help: Reviewing Bug Reports

6.2 Classifying bug reports

A good bug report is the one which:

1. Explains clearly how to reproduce the bug.

2. Includes the version of R, the machine architecture, and the operating system platform
on which the bug occurred.

Relevant details should be a part of a good bug report. You can help with the following tasks
once you have some R programming experience:

1. Reproducing the bug: If you see a bug report which does not clearly explain how to
reproduce it, you can try reproducing the bug and eventually make things easier for the
core developer(s) and/or package maintainer(s).

2. Checking different binary builds: Check whether the bug occurs on a different binary
build of R. It is helpful to know whether the bug is affecting: r-patched, r-devel, or
r-release binary builds of R.

31

https://blog.r-project.org/2019/10/09/r-can-use-your-help-reviewing-bug-reports/index.html
https://blog.r-project.org/2019/10/09/r-can-use-your-help-reviewing-bug-reports/index.html

3. Writing a unit test: If the bug report lacks a unit test that should be a part of R’s test
suite, then you can help with providing it.

These helpful tasks allow the Core developers and/ or maintainers to classify a bug report
properly, so that the bug can be handled in a timely fashion.

6.3 How to find a bug report or an issue to review?

1. You may search old bug reports or issues that could be closed. Old bug reports may no
longer be valid or may include a patch that is ready to be committed, but no one has
had the time to review and commit.

2. You might also want to search for issues in topics in which you have a working knowledge.
When on Bugzilla you can use the advanced search to find specific topics. Bug reports
are by default public on Bugzilla (unless the defaults are changed to avoid security
vulnerability).

6.4 Example of a bug review submitted on Bugzilla

If you would like to see how bugs are reviewed on Bugzilla, the Bug 16542 - nlme:::summary.lmList
with unequal outputs per group is an example where an old bug report is being reviewed. It
is tested to see if it was still an issue and a few ways are proposed to resolve the issue.

Note

There is a #bug-reporting channel on the R Contributors slack where you can share
your bug report(s) for review/feedback before submitting to Bugzilla. This can help with
checking that it really is a bug, that you have included the important information and
excluded redundant information.

6.5 See also

1. Reviewing bug reports: Blog

32

https://bugs.r-project.org/bugzilla/show_bug.cgi?id=16542
https://bugs.r-project.org/bugzilla/show_bug.cgi?id=16542
https://r-contributors.slack.com/
https://blog.r-project.org/2019/10/09/r-can-use-your-help-reviewing-bug-reports/index.html

7 Finding the Source

This chapter discusses how you can have an overview of the R codebase. For instance, where
to find the implementation of a base function written in R and where to find a primitive
implementation written in C. You may want to find the source code of a function just out
of curiosity or maybe to gain more insight into what a particular function is actually doing.
Whatever be the case, reading the source code will help you to learn a lot about any function.

7.1 Finding R source code

1. Find the R function with the code of interest. You will always be able to print the
top-level function (or use View(function_name) in RStudio). Looking at the code for
the body of this function will reveal what you need to do next:

• Can already see code of interest: stop here or skip to step 3 to find the corresponding
file in the R sources.

• Code of interest is in nested R function: go to step 2.

• Top-level function is an S3 generic, identified by a call to UseMethod(). Use
methods(function_name) to see available methods, then go to step 2.

• Code of interest is in compiled code, identified by a call to .C(), .Call(), .Fortran(),
.External(), and .External.graphics(), or .Internal() and .Primitive(): go to
section on compiled code.

2. Nested functions or S3 methods may not be exported by the package they are in. If this
is the case, the simplest way to view the code is to use getAnywhere() or getS3method().
Now you can keep looking at nested R functions till you find the code of interest or hit
a call to compiled code.

3. Find an R function in the R sources. Two options here:

• Search on the internet: For R Core packages, search on the GitHub mirror
(https://github.com/r-devel/r-svn); for recommended packages, use the CRAN
mirror (https://github.com/cran) - this will link to the source on GitHub if available,
e.g. https://github.com/cran/survival. Note that GitHub search ignores wildcard
characters

33

. , : ; / \ ` ' " = * ! ? # $ & + ^ | ~ < > () { } []

but this does not include - so you can search for a function or S3 method as follows:

"body <- function" extension:R
"quantile.ecdf <- function" extension:R

• Search in the R sources using grep: The R Patched and Development Versions chapter
discusses how to download the R sources directly or from the svn repository. Now if the
sources are in ~/R-devel, you can search as follows:

grep -R "body <- function" ~/R-devel/src
grep -R "quantile <- function" ~/R-devel/src/library

Note: The above procedure does not cover S4, R6 or RC generics or methods. Refer accessing
R source for further details.

7.2 Finding C source code

1. If .Internal() or .Primitive(), find entry point in names.c as described in the Jenny
Bryan’s post of accessing R source. For all other calls to compiled code, you can find
the entry point from within R. For instance, the body of complete.cases() is

.External(C_compcases, ...)

C_compcases inherits from class “NativeSymbolInfo” and we can extract the name of the entry
point via

stats:::C_compcases$name

We know that it is in the stats package as we see that when we print complete.cases or look
at the help file. This shows us that the entry point is simply “compcases” and in fact that is
the general convention in R code, that you simply remove the C_ prefix (sometimes .F_ for
Fortran code1) in the name of the object passed to the first argument of the call.

2. Once you have the entry point, search as for R code. In the case of searching on GitHub,
restrict the search to files with the relevant extension

1Other variations are also possible. For example, .External.graphics() calls to C functions in the grid
package have a C_ prefix in the R code, but an L_ prefix in the C code.

34

https://github.com/jennybc/access-r-source
https://github.com/jennybc/access-r-source
https://github.com/jennybc/access-r-source

compcases path:*.c
lowesw path:*.f

similarly for grep

grep -R --include=*.c "compcases" ~/R-devel/src/library/

Note:

1. Many editors (like RStudio, ESS) support ctags for code browsing, making it easy to
jump to definitions of functions. R CMD rtags can generate ctags for any R code (Credit:
Deepayan Sarkar).

2. A more sophisticated system is called GNU GLOBAL, which also supports finding all
references (calls) to a function.

3. GitHub has a code navigation feature via the library tree-sitter. Unfortunately, it does
not have R support yet. An R driver for tree-sitter made by Jim Hester is available.

7.3 See also

Read the R source blogpost.

35

https://en.wikipedia.org/wiki/Ctags
https://github.com/r-lib/tree-sitter-r
https://blog.r-hub.io/2019/05/14/read-the-source/

8 Lifecycle of a Patch

8.1 Introduction

R uses a workflow based on patches. A patch is the set of differences (additions and deletions)
between two versions of code. So you can create a patch defining a bug fix or a proposed
update to the R codebase and submit it through your official Bugzilla account to the core
developer(s). Be clear in your communication as it is the key to contributing to any project,
especially an open source project like R.

8.2 When do you submit a patch?

There might be a situation where you come across a bug in R, which you may have an idea of
how to fix. This can turn out to be an opportunity for you to submit a patch. By submitting
a patch or a bug fix, you are helping to reduce the workload on the R developers in addition
to yourself being a contributor to R!

When you submit a patch, you are helping the developer(s) and maintainer(s) so that they do
not have to write the entire code from scratch. Instead, they can test and tweak your patch,
if necessary.

8.3 What tools are required to submit a patch?

To submit a patch, you need:

1. SVN installed on your machine.

2. The latest developer version of R.

You can retrieve the latest source code of R via:

export TOP_SRCDIR="$HOME/Downloads/R"
svn checkout https://svn.r-project.org/R/trunk/ "$TOP_SRCDIR"

36

http://subversion.apache.org/

Depending on the operative system you might need to do some steps before that. The different
steps required can be found in previous chapters of the book, for Windows, macOS and
Linux.

8.4 How to prepare a patch?

If you have the source code in $TOP_SRCDIR you can edit the files, for example a documenta-
tion file such as "$TOP_SRCDIR"/src/library/stats/man/Multinom.Rd, to make your desired
changes to that or more files.

Then you should check that R still works as expected via:

cd "$TOP_SRCDIR"
make check-devel

If there is no test for your proposed change you can add a new regression test, following the
guidelines.

Then you should bring changes from the repository into the working copy, in case any other
change has been introduced, and create a patch.diff file with just the changes you want to
propose to the R core:

svn update
svn diff > patch.diff

Most often, changes are made to existing files, but if you happen to be adding a new file in
your change, you’ll need to run svn add path/to/file1 ... before running svn diff to
mark those files for inclusion.

This patch.diff file is the one that can be proposed to the R core via Bugzilla. You can also
ask for reviews to the patch before proposing it to the R core via the r-devel mailing list or
the slack channel of the R-contributors space.

8.4.1 Using a git mirror

Besides checking in your computer, you can use the Github mirror r-devel/r-svn of the source
code to check this patch with different configurations and OS.

You should first find the file to edit, via the github interface for example:

37

https://stat.ethz.ch/mailman/listinfo/r-devel
https://github.com/r-devel/r-svn

Figure 8.1: Screenshot of the heading of the src/library/stats/man/Mulinom.Rd

Then you can edit it, directly in the interface or using the github interface:

Figure 8.2: Screenshot of the file src/library/stats/man/Mulinom.Rd being edited via the
Github interface

Create a commit with a message describing the changes

Figure 8.3: Screenshot of the commit message

38

And create a pull request from the branch created to check the changes.

Figure 8.4: Screenshot of the message when opening a pull requests from the branch

Add a message and description of the svn for other users and the R core to know what is the
purpose of this modification:

Figure 8.5: Screenshot of the message and content while opening a pull requests for the r-svn
repository

39

Figure 8.6: Screenshot of the pull requests opened

Once the PR is submitted, some automatic checks will be triggered (they might need to be
approved by some other users as per Github rules):

When the checks end you will need to explore the results and asses if the results indicate a
problem or not.

40

Figure 8.7: Screenshot of the results of the Github checks in the r-svn mirror

Once you are happy with the changes and the checks report that everything is okay you can
retrieve the patch via:

https://patch-diff.githubusercontent.com/raw/r-devel/r-svn/pull/<pull_request_number>.diff

Save <pull_request_number>.diff as a plain text file to submit your patch, remember to
check if it meets the recommendations for good patches.

If you want to use git from the terminal to create the pull request (PR) to test the changes,
you can use this summary of the available git commands.

8.5 Making good patches

When creating a patch for submission, there are several things that you can do to help ensure
that your patch is accepted:

1. Make sure to follow R’s coding standards (R is a GNU project and there are GNU
coding standards). The coding style of the patch you submit should largely match with
the codebase it is being applied to. If your patch has one or two minor discrepancies, then
those may be fixed by the core developer who will eventually test your patch. However,
if there are systematic deviations from the style guides your patch will be put on hold
until you fix the formatting issues. There is no comprehensive official R style manual,
however some nearly universal standards are summarised in this article.

41

https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://cran.r-project.org/doc/manuals/r-release/R-ints.html#R-coding-standards
https://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf

2. Be aware of backwards-compatibility considerations. While the core developer who even-
tually handles your patch will make the final call on whether something is acceptable,
thinking about backwards-compatibility early will help prevent having your patch re-
jected on these grounds. Put yourself in the shoes of someone whose code will be broken
by the change(s) introduced by the patch. It is quite likely that any change made will
break someone’s code, so you need to have a good reason to make a change as you will
be forcing someone to update their code. This obviously does not apply to new func-
tions or new arguments. New arguments should be optional and have default values
which maintain the existing behaviour. If in doubt, discuss the issue with experienced
developers.

3. Make sure you have proper tests to verify that your patch works as expected. Patches
may not be accepted without the proper tests.

4. Make sure the entire test suite runs without failure because of your changes. It is not
sufficient to only run whichever test seems impacted by your changes, because there
might be interactions unknown to you between your changes and some other part of the
interpreter.

5. Proper documentation additions/changes should be included.

6. Each bugfix should ideally be addressed by a single patch. In particular, do not fix more
than one issue in the same patch (except, if one code change fixes all of them) and do
not do cosmetic changes to unrelated code in the same patch as some bugfix.

8.6 Submitting your patch for review

8.6.1 Patch in response to a pre-existing issue or bug report

In this case, you should attach the patch to the existing issue or bug report on Bugzilla with
a brief comment.

1. Use the Attachments option to add the *.diff file as attachment.

2. On the new Create New Attachment web page, add a Brief Description.

3. Select Content Type as patch.

4. Add comments (often prose text) in this page rather than in the original bugzilla page
for the PR.

5. Press Submit. This will give you a bugzilla submission that sends one e-mail to all of
R-core plus the PR author.

42

8.6.2 Patch in response to an unreported issue or bug report

Assuming you already performed a search on Bugzilla for a pre-existing issue or bug and did
not find the issue or bug reported, you need to create a new bug report and include your
patch with it. Please fill in as much relevant detail as possible to prevent reviewers from
having to delay reviewing your patch because of lack of information. Include (mostly as the
first sentence), a to-the-point explanation of what the purpose of the patch is. This sentence
should not be in the descriptive form, rather an imperative form will be more suitable here. If
this is not enough detail for a patch, a new paragraphs(s) can be added to explain in proper
depth what has happened. The details should be good enough that a core developer reading
it understands the justification for the change.

8.7 Getting your patch reviewed

To begin with, please be patient. There are many more people submitting patches than there
are people capable of reviewing your patches. Getting your patch reviewed requires a reviewer
to have the spare time and motivation to look at your patch. We cannot force anyone to review
patches and no one is employed to look at patches.

There is a #patches-for-review channel on the R Contributors slack where you can share
your patch(es) for review/feedback before submitting to R-Core/Bugzilla. This can help with
checking that you have included the important information and excluded redundant informa-
tion.

If your patch has not received any notice from reviewers (i.e., no comment made) after one
month, comment/message on the #patches-for-review channel to remind the members that
the patch needs a review.

When someone does manage to find the time to look at your patch they will most likely make
comments about how it can be improved. It is then expected that you update your patch to
address these comments, and the review process will thus iterate until a satisfactory solution
has emerged.

8.7.1 How to review a patch?

One of the bottlenecks in the R development process is the lack of code reviews. If you browse
Bugzilla, you will see that numerous issues have a fix, but cannot be merged into the main
source code repository, because no one has reviewed the proposed solution. Reviewing a patch
can be just as informative as providing a patch and it will allow you to give constructive
comments on another developer’s work. This guide provides a checklist for submitting a patch
review. It is a common misconception that in order to be useful, a patch review has to be

43

https://r-contributors.slack.com/

perfect. This is not the case at all. It is helpful to just test the patch and/or play around with
the code and leave comments in the patch or on Bugzilla.

If a bug report or an issue has a patch attached that has not been reviewed, you can help by
making sure that the patch:

• follows the style guides;

• is a good solution to the problem it is trying to solve;

• includes proper tests; and

• includes proper documentation changes.

Also refer to Making good patches for more ideas. Doing all of this allows the core developer(s)
and/ or maintainer(s) to more quickly look for subtle issues that only people with extensive
experience working on R’s codebase will notice.

8.8 Leaving a patch review on Bugzilla

When you review a patch, you should provide additional details and context of your review
process and leave comments. For example:

1. If you tested the patch, report the result and the system and version tested on, such as
‘Windows 10’, ‘Ubuntu 16.4’, or ‘Mac High Sierra’.

2. If you request changes, try to suggest how or attach an updated patch.

3. Comment on what is ‘good’ about the patch, not just the ‘bad’. Doing so will make it
easier for the patch author to find the good in your comments.

8.9 Dismissing review from another core developer

A core developer can dismiss another core developer’s review if they confirmed that the re-
quested changes have been made. When a core developer has assigned the patch to themselves,
then it is a sign that they are actively looking after the patch, and their review should not be
dismissed.

44

8.10 Acceptance or rejection of your patch

Once your patch has reached an acceptable state, it will either be applied or rejected. If it is
rejected, please do not take it personally. Your work is still appreciated regardless of whether
your patch is applied. Balancing what does and does not go into R is tricky and everyone’s
contributions cannot always be accepted.

But if your patch is accepted and applied it will then go on to be released with the next patched
release and eventually the next major release of R. It may also be backported to older versions
of R as a bugfix if the core developer doing the patch acceptance believes it is warranted.

It may take longer before your patch is accepted and applied or rejected, sometimes even
months or years. Nonetheless, it is appreciated that you submitted a patch.

8.11 Examples of patch reports on Bugzilla

8.12 Examples of reviewing a patch

8.13 See also

1. Submitting patches

45

https://www.r-project.org/bugs.html#how-to-submit-patches

9 Documenting

R has a substantial body of documentation, comprising help files for the core packages and
a set of manuals aimed at users (An Introduction to R, R Data Import/Export), system
administrators (R Installation and Administration) and developers (Writing R Extensions,
The R language definition, and R Internals). This documentation was developed by the R
Core Team with input from external contributors. The continuing involvement of the user
community is important in maintaining this valuable documentation.

The involvement of the community takes many forms, from contributing content, to making
bug reports or raising an issue when the documentation could be more complete or made easier
to follow.

This chapter is about the ways people can contribute to R’s documentation, with guidance on
how to do that. Any time you feel that you can clarify or fill gaps in existing documentation,
your contribution is welcome and appreciated. If you find it difficult to deal with the markup
formatting language used in the source files, you can ask for help with that part too. Please
do not let the material in this chapter stand between the documentation and your desire to
help out. However, not every good faith effort to change or extend the documentation will
be accepted - sometimes the suggested changes may be incorrect; other times, while a change
in wording may make some things clearer and easier to understand, the finer details of some
corner case may become less clear, leading to the suggested changes being declined or modified
by a member of R Core before applying them (if they agree the issue is important enough to
fix).

9.1 Helping with documentation

Maintaining the accuracy of R’s documentation and keeping a high level of quality takes a
lot of effort. Community members, like you, help with writing, editing, and updating content,
and these contributions are appreciated and welcomed.

Looking at pre-existing documentation source files can be very helpful when getting started.

You can directly search for documentation issues/bugs on Bugzilla. Issues vary from typos to
unclear documentation and items lacking documentation.

If you see a documentation issue that you would like to tackle, you can leave a comment on
the issue saying you are going to try to solve the issue and mention roughly how long you

46

https://bugs.r-project.org/buglist.cgi?component=Documentation&list_id=22501&product=R&resolution=---

think you will take to do so (this allows others to take on the issue if you happen to forget or
lose interest).

9.2 Reporting documentation bugs

To suggest improvements to the R manuals, report typos or bugs in the R manuals, or to raise
issues related to documentation in packages maintained by the R Core Team, follow the usual
guidance for reporting bugs in R.

To report bugs or typos in the documentation of a package that is not maintained by the R
Core Team, follow the guidance for reporting bugs in contributed packages.

Note:

There is a #core-documentation channel on the R Contributors slack where you can get
feedback before reporting an issue or get feedback on proposed improvements.

9.2.1 Example documentation bugs

Here are a couple of successfully resolved bugs as examples.

1. Bug 16003 - heatmap scale argument: description not complete

There was a question about the description in the documentation, where it wasn’t technically
incorrect, but was slightly unclear. This led to a discussion around the updates to the text
and a couple of extra examples were added in for clarity too.

2. Bug 18781 - typo in texinfo

This is an example of a typo being spotted, raised and fixed within the same day.

9.3 Guidelines for writing R help files

This section is based on the guidelines used by R Core developers for writing R help files.
Extensive details of writing R documentation files can be found in the Writing R Extensions
manual.

The language used in the documentations should follow these basic rules:

1. Affirmative tone should be used to describe what the function does and how to use
it effectively. Rather than creating worry in the mind of a reader, it should establish
confident knowledge about the effective use of the particular function/feature.

47

https://r-contributors.slack.com/
https://bugs.r-project.org/show_bug.cgi?id=16003
https://bugs.r-project.org/show_bug.cgi?id=18781
https://developer.r-project.org/Rds.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Writing-R-documentation-files

2. More documentation is not necessarily better documentation. Long descriptions full of
corner cases and caveats can create the impression that a function is more complex or
harder to use than it actually is. Be succinct but exhaustive.

3. Short code examples can help in understanding better. Readers can often grasp a simple
example more quickly than they can digest a formal description. Usually people learn
faster with concrete, motivating examples that match the context of a typical use case.

4. Giving a code equivalent (or approximate equivalent) can be a useful addition to the
description provided. You should carefully weigh whether the code equivalent adds value
to the document.

5. The tone of the documentation needs to be respectful of the reader’s background. Lay
out the relevant information, show motivating use cases, provide glossary links, and do
your best to connect-the-dots. The documentation is meant for newcomers, many of
whom will be using it to evaluate the R language as a whole. The experience needs to
be positive and not leave the reader with worries that something bad will happen if they
make a mistake.

9.4 Introduction to .Rd files

The R help files are written in “R documentation” (Rd) format, a markup language which
resembles LaTeX. The .Rd file format can be further processed into a variety of formats,
including LaTeX, HTML, and plain text. The .Rd files can be found in the man directory of
the source code for the corresponding package.

There are three main parts of an .Rd file:

1. Header: This part is for the basic information of the document/file. For instance, the
name of the file, the topics documented, a title, a short textual description, and R usage
information for the objects documented.

2. Body: This part includes further information on the function’s arguments and return
value.

3. Footer: This part is optional. Usually the keyword information is included here.

All the above information is included in a .Rd file within a series of sections with standard
names (user-defined sections are also allowed). These sections are discussed below:

1. \title section:

• Capitalize each word.
• Do not end in a period.
• Avoid use of markup language (because markup language need not be suitable for

various hypertext search systems).

48

2. \usage and \examples sections:

• Line length of 65 characters is advised.
• Use TRUE instead of T and FALSE instead of F.
• Add spaces around binary operators.
• Add spaces after commas in the argument lists.
• Use <- rather than = for assignments.
• Add spaces around the <- operator.
• Do not use tabs to indent (as these do not render correctly on all possible pagers).
• Use 4 spaces to indent the (example) code.
• Make sure the examples are directly executable.
• The examples should be system-independent.
• The examples should not require special facilities (for instance, Internet access or

write permission to specific directories).
• Examples should also not take longer than necessary to run, as they are run when

checking a build of R.

3. \source and \references sections:

• Author(s) names should be written in the form Author, A. B..
• Author(s) names should be separated by a comma or and (but not both).
• Separate paragraphs (separated by a blank line) should be used for each reference.
• Give a date immediately after the author(s) names.
• Do not put a period after the date.
• Titles of books and journals (not articles) should be enclosed in \emph{...}.
• Volume numbers for journals are to be enclosed in \bold{...} and followed by a

comma.
• Use -- for page ranges.
• For giving an address for a publisher use the format New York: Springer-Verlag.

For example, the help file for base::mean() is found at https://svn.r-project.org/R/trunk/
src/library/base/man/mean.Rd. The filemean.Rd has the content shown below:

% File src/library/base/man/mean.Rd
% Part of the R package, https://www.R-project.org
% Copyright 1995-2022 R Core Team
% Distributed under GPL 2 or later

\name{mean}
\title{Arithmetic Mean}
\usage{
mean(x, \dots)

\method{mean}{default}(x, trim = 0, na.rm = FALSE, \dots)

49

https://svn.r-project.org/R/trunk/src/library/base/man/mean.Rd
https://svn.r-project.org/R/trunk/src/library/base/man/mean.Rd

}
\alias{mean}
\alias{mean.default}
\arguments{
\item{x}{An \R object. Currently there are methods for

numeric/logical vectors and \link[=Dates]{date},
\link{date-time} and \link{time interval} objects. Complex vectors
are allowed for \code{trim = 0}, only.}

\item{trim}{the fraction (0 to 0.5) of observations to be
trimmed from each end of \code{x} before the mean is computed.
Values of trim outside that range are taken as the nearest endpoint.

}
\item{na.rm}{a logical evaluating to \code{TRUE} or \code{FALSE}

indicating whether \code{NA} values should be stripped before the
computation proceeds.}

\item{\dots}{further arguments passed to or from other methods.}
}
\description{
Generic function for the (trimmed) arithmetic mean.

}
\value{
If \code{trim} is zero (the default), the arithmetic mean of the
values in \code{x} is computed, as a numeric or complex vector of
length one. If \code{x} is not logical (coerced to numeric), numeric
(including integer) or complex, \code{NA_real_} is returned, with a warning.

If \code{trim} is non-zero, a symmetrically trimmed mean is computed
with a fraction of \code{trim} observations deleted from each end
before the mean is computed.

}
\references{
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
\emph{The New S Language}.
Wadsworth & Brooks/Cole.

}
\seealso{
\code{\link{weighted.mean}}, \code{\link{mean.POSIXct}},
\code{\link{colMeans}} for row and column means.

}
\examples{
x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

50

}
\keyword{univar}

Many R package developers write help files using the R package roxygen2, which generates
.Rd files from comments in the corresponding .R files. However, in this guide we only consider
.Rd files, because the help files for the base distribution are written and edited directly in .Rd
format.

9.5 R manuals

The R manuals are a part of the R sources. Hence, bug reports/patches can also be submitted
via Bugzilla, e.g. Bug 15221 - R-admin/‘Installing R under Windows’: Missing argument name.
Note that they are typically referred to by their file names as listed below:

Manual Nickname
An Introduction to R “R-intro”
R Data Import/Export “R-data”
R Installation and Administration “R-admin”
Writing R Extensions “R-exts”
The R language definition “R-lang”
R Internals “R-ints”

Note

• Every manual is associated with a particular version of R, so you should check the
version before reporting a bug.

• The R manuals page has links for the three types of release: r-release,
r-patched and r-devel. These nicknames appear in the URLs, e.g. https://cran.r-
project.org/doc/manuals/r-release/R-intro.html.

• The Texinfo manual should be referred to for how to mark up text.

9.6 Proofreading

While an issue filed on Bugzilla means there is a known issue somewhere, that does not mean
there are not other issues lurking about in the documentation. Proofreading a part of the
documentation can often uncover problems.

If you decide to proofread, read a section of the documentation from start to finish, filing
issues in Bugzilla for each major type of problem you find. It is best to avoid filing a single

51

https://cran.r-project.org/package=roxygen2
https://cran.r-project.org/manuals.html
https://svn.r-project.org/R/trunk/doc/manual/
https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15221
https://cran.r-project.org/manuals.html
https://www.gnu.org/software/texinfo/
https://www.gnu.org/software/texinfo/manual/texinfo/texinfo.html

issue for an entire section containing multiple problems; instead, file several issues so that it
is easier to break the work up for multiple people and more efficient review.

9.7 Helping with the R Development Guide

The R Development Guide (what you are reading now) uses the same process as the main R
documentation, except for some small differences. The source lives in a GitHub repository and
bug reports should be submitted to the devguide GitHub tracker.

There’s a section on the introduction page detailing how to contribute to this guide. Once you
have made suggested changes you can raise them for someone else to review through a pull
request on GitHub. Examples of past pull requests can be found on the pull request tab in
this guide’s GitHub repository. Our workflow for the R Development Guide uses continuous
integration and deployment so changes to the live R Development Guide site are normally
published once a pull request is merged.

9.8 See also

1. Writing R documentation files

52

https://github.com/r-devel/rdevguide/
https://github.com/r-devel/rdevguide/issues
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://github.com/r-devel/rdevguide/pulls?q=is%3Apr+is%3Aclosed
https://github.com/r-devel/rdevguide/pulls?q=is%3Apr+is%3Aclosed
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Writing-R-documentation-files

10 Message Translations

This chapter covers internationalization in R, i.e., the display of messages in languages other
than English. All output in R (such as messages emitted by stop(), warning(), or message())
is eligible for translation, as are menu labels in the GUI. Depending on the version of R that
you are using, some of the languages might already be available while others may need work.
R leverages the gettext program to handle the conversion from English to arbitrary target
languages.

Having messages available in other languages can be an important bridge for R learners not
confident in English – rather than learning two things at once (coding in R and processing
diagnostic information in English), they can focus on coding while getting more natural er-
rors/warnings in their native tongue.

The gettext manual is a more canonical reference for a deep understanding of how gettext
works. This chapter will just give a broad overview, with particular focus on how things
work for R, with the goal of making it as low-friction as possible for developers and users to
contribute new/updated translations.

10.1 How translations work

Each of the default packages distributed with R (i.e., those found in ./src/library such as
base, utils, and stats and which have priority base) contains a po directory. A po directory is
the central location for ataloguing/translating each package’s messages. It contains a template
message file (.pot) for the corresponding ackage along with translated .po files (that are
created using the template .pot file).

10.1.1 .pot files

A .pot file is a template file found inside the po directory of an R package. This template
file is a snapshot of the messages available in a given domain. A domain in R typically
identifies a source package and a source language (either R or C/C++). For example, the
file R-stats.pot (found in the R sources in ./src/library/stats/po) is a catalogue of all
messages produced by R code in the stats package, while stats.pot is a catalogue of all
messages produced by C code in the stats package.

53

https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/manual/index.html

The ‘base’ package has two exceptions to the basic pattern described above. The first is
the domain for messages produced by the C code which is the fundamental backing of R
itself (especially, but not exclusively, the C code under ./src/main[^The file ./po/POTFILES
is the canonical source of files searched. Note that while, technically, it is possible to support
translations in Fortran code, R does not currently do so. Only a handful of messages are
produced by Fortran routines in the R sources.]). The associated .pot file is R.pot and is
found in ./src/library/base/po. R-base.potis a normal.potfile because base has a
normalR‘ directory.

The second is the domain for the Windows R GUI, i.e., the text in the menus and elsewhere
in the R GUI program available for running R on Windows. These messages are stored in the
RGui.pot domain, also in the po directory for base, and are most commonly derived from C
code found in ./src/gnuwin32. One reason to keep this domain separate is that it is only
relevant to one platform (Windows). In particular, Windows has historically different char-
acter encodings, so that it made more sense for Windows developers to produce translations
specifically or Windows, since it is non-trivial for non-Windows users to test their translations
for the Windows GUI.

10.1.1.1 Generating .pot files

For outside contributors, there’s no need to update .pot files – translators will typically take
the R .pot files as given and generate .po files. These will be sent along to a language-specific
translation maintainer, who then compiles them to send to the R Core developer responsible
for translations, who finally applies them as a patch.

To emphasize, this section is almost always not needed for contributing translations – it is here
for completeness and edification.

10.1.2 .po files

.po files are the most important artifacts for translators. They provide the (human-readable!)
mapping between the messages as they appear in the source code and how the messages will
appear to users in translated locales.

10.1.2.1 Singular messages

Most messages appear as msgid/msgstr pairs. The former gives the message as it appears in
the code, while the latter shows how it should appear in translation. For example, here is an
error in German (locale: de) informing the user that their input must be of class POSIXt

msgid "'to' must be a \"POSIXt\" object"
msgstr "'to' muss ein \"POSIXt\" Objekt sein"

54

See this in context in the R-de.po source file.

The same message can also be found in R-it.po giving the translation to Italian:

msgid "'to' must be a \"POSIXt\" object"
msgstr "'to' dev'essere un oggetto \"POSIXt\""

10.1.2.2 Plural messages

Some messages will have different translations depending on some input determined at run
time (e.g., the length() of an input object or the nrow() of a data.frame). This presents a
challenge for translation, because different languages have different rules for how to pluralize
different ordinal numbers[^See the relevant section of the gettext manual]. For example,
English typically adds s to any quantity of items besides 1 (1 dog, 2 dogs, 100 dogs, even 0
dogs). Chinese typically does not alter the word itself in similar situations (���, ���, ����, ���);
Arabic has six different ways to pluralize a quantity.

In .po files, this shows up in the form of msgid_plural entries, followed by several ordered
msgstr entries. Here’s an example from R-de.po1:

msgid "Warning message:\n"
msgid_plural "Warning messages:\n"
msgstr[0] "Warnmeldung:\n"
msgstr[1] "Warnmeldungen:\n"

The two entries in English correspond to the singular and plural messages; the two entries in
German correspond similarly, because pluralization rules in German are similar to those in
English. The situation in Lithuanian (R-lt.po) is more divergent:

msgid "Warning message:\n"
msgid_plural "Warning messages:\n"
msgstr[0] "Įspėjantis pranešimas:\n"
msgstr[1] "Įspėjantys pranešimai:\n"
msgstr[2] "Įspėjančių pranešimų:\n"

This corresponds to the 3 different ways to pluralize words in Polish.

What do 0, 1, and 2 correspond to, exactly? Ideally, this will be clear to native speakers of the
language, but for clarity, it is the solution to a small arithmetic problem that can be found in
the language’s metadata entry. Look for the Plural-Forms entry in the metadata at the top
of the .po file; here it is for Lithuanian:

1The GitHub mirror of the actual svn repo is linked in this chapter as it is a better interface for browsing the
source files.

55

https://svn.r-project.org/R/trunk/src/library/base/po/R-de.po
https://svn.r-project.org/R/trunk/src/library/base/po/R-it.po
https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
https://github.com/r-devel/r-svn/blob/c715d61cb74b3fee2d035faed9b258e86e420b75/src/library/base/po/R-de.po#L2015-L2018
https://github.com/r-devel/r-svn/blob/c715d61cb74b3fee2d035faed9b258e86e420b75/src/library/base/po/R-lt.po#L1999-L2003
https://github.com/r-devel/r-svn/blob/c715d61cb74b3fee2d035faed9b258e86e420b75/src/library/base/po/R-lt.po#L18-L19
https://svn.r-project.org/R/trunk/

"Plural-Forms: nplurals=3; plural=(n%10==1 && n%100!=11 ? 0 : n%10>=2 && (n"
"%100<10 || n%100>=20) ? 1 : 2);\n"

nplurals tells us how many entries correspond to each msgid_plural for this language.
plural tells us, for the quantity n, which entry to use. The arithmetic is C code; most impor-
tant if you really want to parse this and are only familiar with R code is C’s ternary operator:
test ? valueIfTrue : valueIfFalse is a handy way to write R’s if (test) valueIfTrue
else valueIfFalse.

Parsing, we get the following associations:

• the 0 entry corresponds to when a number equals 1 modulo 10 (i.e., 1, 11, 21, 31, …)
except numbers equaling 11 modulo 100 (i.e., 11, 111, 211, 311, …). Combining, that’s 1,
21, 31, …, 91, 101, 121, 131, …, 191, …

• the 1 entry corresponds to numbers at least 2 modulo 10 (2, 3, …, 8, 9, 12, 13, 14, …)
and either below 10 modulo 100 (0, 1, …, 9, 100, 101, …, 109, …) or exceeding 20 modulo
100 (21, 22, …, 99). Combining, that’s 2, 3, …, 9, 22, 23, …, 29, 32, 33, … 39, …, 102, 103,
…, 109, 122, 123, …

• The 2 entry corresponds to all other numbers, i.e. 0, 10, 11, 12, …, 19, 20, 30, …, 90, 100,
110, 111, 112, …

10.1.3 .mo files

.po files are plain text, but while helpful for human readers, this is inefficient for consumption
by computers. The .mo format is a “compiled” version of the .po file optimized for retrieving
messages when R is running.

In R-devel, the conversion from .po to .mo is done by R Core – you don’t need to compile
these files yourself. They are stored in the R sources at ./src/library/translations/inst
in various language-specific subdirectories.

10.2 How to contribute new translations

Translating R into different languages helps make it more user-friendly for non-English speakers
and helps to grow the R community. See the blog post on how R can use your help: Translating
R messages.

To get started contributing to translations, please follow the steps below:

Step 1: Register an Account at Weblate

Weblate is an open-source platform for collaborative translation of software projects. Register
an account on R’s Weblate server, https://translate.rx.studio/, to start contributing.

56

https://en.wikipedia.org/wiki/%3F:
https://blog.r-project.org/2022/07/25/r-can-use-your-help-translating-r-messages
https://blog.r-project.org/2022/07/25/r-can-use-your-help-translating-r-messages
https://translate.rx.studio/

Note: To get started follow the detailed workflow and convention for translation
which is given here: https://contributor.r-project.org/translations/

Step 2: Choose a Component and Language

Select a component of R with less than 100% translation. Each component corresponds to the
messages in either the R code or the C code of one of the packages in base R, e.g. base (R
files), or tools (C files). There is one special case: base (R GUI), which corresponds to the
messages in the Windows Graphical User Interface.

After selecting a component, you can select your preferred language.

Step 3: Translate the Message

Now, you can click on Translate button on your right.

Note: More information for String status visit: https://docs.weblate.org/en/latest/
workflows.html#translation-states

57

https://contributor.r-project.org/translations/
https://docs.weblate.org/en/latest/workflows.html#translation-states
https://docs.weblate.org/en/latest/workflows.html#translation-states

Then, start translating the message by typing the translation in the text box.

• If you are confident that the translation is correct, make sure the “Needs editing”
box is unchecked.

• If you are unsure about how to translate, write the translation as a Suggest button
instead.

• Finally, Click “Save and Continue” to save the translation and continue.

58

Note: Use Glossary feature within Weblate making translation easy and consistent:
https://translate.rx.studio/projects/r-project/glossary/

Note: Make sure to use Automatic Suggestions as a starting point.

1. Click on Automatic Suggestions (machine translation)

2. Accept it if you think the automatic suggestion looks good

Some Tips to follow:

• Be consistent: Use the same words and phrases throughout the translation to make it
consistent and avoid confusion.

• Check for technical issues: After finishing the translation, check if you have any
alerts or warning in the Weblate string status, e.g. double instead of single space.

• Follow language specific guidelines: Check how other languages have translated the
string. Even if you are not fluent in another language it can give you an idea of how
other translators have handled it, especially which parts are left verbatim. A detailed
guide is given here : Conventions-for-translations#languages-and-contributions

Related links: https://contributor.r-project.org/tutorials/translating-r-to-your-language/

59

https://translate.rx.studio/projects/r-project/glossary/
https://contributor.r-project.org/translations/Conventions_for_Languages/#languages-and-contributions
https://contributor.r-project.org/tutorials/translating-r-to-your-language/

10.3 Bulk Translations

Instead of translating one string at a time, it is possible to bulk translate a whole component
of R at once:

1. Navigate to the translations for a particular component in a particular language,
e.g. https://translate.rx.studio/projects/r-project/base-c/ar/

2. Select ‘Tools > Automatic translation’

Figure 10.1: Tools drop-down menu with “Automatic Translations” selected

3. In the dialog,

• under ‘Automatic translation mode’, select ‘Add as “needing edit” ’2:

• under ‘Search filter’, select ‘Untranslated strings’
• under ‘Source of automated translations’, select ‘Machine translation’
• under ‘Machine translation engines’, select ‘Microsoft Translator’3:

2By selecting ‘Add as “needing edit” ’, the autotranslated strings would be treated as “fuzzy” translations,
i.e. they would be added to the component source files when a patch is made, but they would NOT be used.

3Microsoft Translator is preferred for bulk translation as our free tier covers 2 million characters/month, where
DeepL only allows 500k chars/month. If Microsoft Translator translations are much worse than DeepL, it
may be useful to use it to translate one string at a time.

60

Figure 10.2: Automatic Translations dialog box

4. Review the translations, edit as necessary and uncheck “needing edit”.

10.4 Current status of translations in R

https://contributor.r-project.org/translations-dashboard/

10.5 Helpful references

• Statistical terms glossary
• The R Translations site contains more details on translating R messages and getting

involved in existing projects.

61

https://contributor.r-project.org/translations-dashboard/
https://www.isi-web.org/glossary
https://contributor.r-project.org/translations/

11 Testing Pre-release R Versions

This chapter is inspired from the blog on testing R before release and discusses how you can
help with testing of pre-release versions of R.

11.1 Where to test?

Whenever possible use a fresh package library for testing, even better would be to use vir-
tual machines for the testing. This would ensure that you do not damage your existing R
installation.

11.1.1 Virtual machine

A free Windows 10 virtual machine is provided by Microsoft (with a 90-day limit) for building,
testing, and checking R packages and R itself. Package maintainers who work on Linux and
MacOS can use it to test their packages on Windows. Read the instructions on how to
automatically set up the machine to check R packages. Tomas Kalibera describes the details
of using virtual machine in the blog Virtual Windows machine for checking R packages.

11.2 What can you test?

You can test:

• Your own programs.

• Your own workflows.

• Your special ways of installing or setting up R.

• Things that interact with external libraries.

• Interactive R packages.

Details of performing testing on various operating systems:

• Windows

62

https://blog.r-project.org/2021/04/28/r-can-use-your-help-testing-r-before-release/index.html
https://svn.r-project.org/R-dev-web/trunk/WindowsBuilds/winutf8/ucrt3/vm.html
https://blog.r-project.org/2021/03/18/virtual-windows-machine-for-checking-r-packages/index.html
https://blog.r-project.org/2021/04/28/r-can-use-your-help-testing-r-before-release/index.html#on-windows

• macOS

• Linux

• Solaris

11.3 Writing tests for R

Writing tests for R is much like writing tests for your own code. Tests need to be thorough,
fast, isolated, consistently repeatable, and as simple as possible.

When you are adding tests to an existing test file, it is also recommended that you study the
other tests in that file; it will teach you which precautions you have to take to make your tests
robust and portable. We try to have tests both for normal behaviour and for error conditions.
Tests live in the tests directory.

11.4 Benchmarks

Benchmarking is useful to test that a change does not degrade performance.

63

https://blog.r-project.org/2021/04/28/r-can-use-your-help-testing-r-before-release/index.html#on-macos
https://blog.r-project.org/2021/04/28/r-can-use-your-help-testing-r-before-release/index.html#on-linux
https://blog.r-project.org/2021/04/28/r-can-use-your-help-testing-r-before-release/index.html#on-solaris

12 Where to Get Help

If you are working on R it is possible that you will come across an issue where you would need
some assistance to solve it. If you require help, there are options available to seek assistance
or get some feedback which are discussed in this chapter. If the question involves process
or tool usage then please check the rest of this guide first as it should answer your question.
Please make sure to search the documentation and resources to see if your question has already
been addressed. If not, then ask for assistance in the appropriate forum. Many developers
are volunteers and please be polite, patient, and thoughtful when requesting for feedback or
help.

12.1 Slack

You can discuss issues related to the development of R and learn about the process of con-
tributing to R on the R Contributors slack. There are a number of experienced developers
on this slack who can answer questions and/or provide feedback. The following channels are
available on the R-devel slack for help and feedback with specific areas:

• #bugreports-for-review: Share bug reports for review/feedback before submitting to
Bugzilla.

• #core-dev-help: Getting help on anything related to R Core contribution.

• #core-documentation: Discuss patches/improvements to R’s documentation.

• #core-translation: Discuss translating R messages, warnings, and errors into non-English
languages.

• #patches-for-review: Share patches for peer review before submitting to R Core.

Note: You may not be able to access the history of these channels, so it cannot be used as a
knowledge base of sorts.

64

https://r-contributors.slack.com/

12.2 Mailing lists

There are quite a few mailing lists for getting help with R:

• R-devel:

– Questions and discussion about development of R vs. with R.
– Getting help with technical programming issues, e.g. interfacing R with C/C++.
– Proposals of new functionality/feature requests for R.
– Pre-testing of new versions of R.
– Enhancements and patches to the R source code and the R documentation.
– Posting examples and benchmarks.

• R-help:

– Discussions about problems and solutions using R.

• R-package-devel:

– Getting help about package development in R.
– Learning about the package development process.
– Discussing problems developing a package (or problem in passing the R CMD

check).

Please avoid cross-posting to both the R-package-devel and the R-devel mailing lists.

12.3 File a bug

If you strongly suspect you have come across a bug (be it in the build process, or in other
areas), then report it on Bugzilla.

65

https://www.r-project.org/mail.html
https://stat.ethz.ch/mailman/listinfo/r-devel
https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-package-devel

13 News and Announcements

Here are some resources that can be useful to keep up with the developments in R:

13.1 Blogs

The R project maintains The R Blog with posts mainly written by the R Core Team. News of
changes in the development version of R found on the Daily News about R-devel blog which
is updated daily.

13.2 Conferences

Updates about conferences actively supported or endorsed by The R Foundation can be found
here. These conferences are organised by members from the R community.

13.3 Journal

The R Journal is an open access and refereed journal featuring short to medium length articles
that should be of interest to users or developers of R. It also has a news section where infor-
mation on, changes in R (new features of the latest release), changes on CRAN (new add-on
packages, manuals, binary contributions, mirrors, etc.), upcoming conferences, and conference
reports is provided.

13.4 Mailing lists

• R-announce: A moderated mailing list used for announcements by the R Core Develop-
ment Team. Major announcements about the development of R and the availability of
new code are made here.

• R-packages: A moderated mailing list for announcements about contributed R packages
(typically on CRAN) and similar R project extensions.

66

https://www.r-project.org/
https://blog.r-project.org/
https://developer.r-project.org/blosxom.cgi/R-devel
https://www.r-project.org/conferences/
https://journal.r-project.org/
https://stat.ethz.ch/mailman/listinfo/r-announce
https://stat.ethz.ch/mailman/listinfo/r-packages
https://cran.r-project.org/

13.5 Twitter

Follow @R_dev_news on Twitter for news of changes in the development version of R and
new posts on The R Blog announcements.

67

https://twitter.com/R_dev_news
https://developer.r-project.org/RSSfeeds.html
https://blog.r-project.org/

14 Developer Tools

This chapter lists resources and tools which R developers may use. Here we will go over some
commonly used tools that are relevant to R’s workflow. As there are several ways to accom-
plish these tasks, this chapter reflects methods suitable for new contributors. Experienced
contributors may desire a different approach.

14.1 Subversion (svn) client

Subversion (svn) is a version control system that tracks any changes made to files and direc-
tories. You can install either the TortoiseSVN (command line tool, and Windows Explorer
integration) or the SlikSVN (just the command line tool) client. They have Windows installers
and can be used from Windows cmd or RStudio terminal.

Some resources for learning subversion commands:

1. Apache Subversion quick start guide

2. TortoiseSVN commands

3. SlikSVN basics

4. Subversion book

14.2 Globally search for a regular expression and print matching
lines (grep)

grep is a command line utility for searching plain text data sets for lines that match a regular
expression. Refer the grep manual for more commands.

14.3 Git

Git is also a version control system for tracking changes in any files and directories. View git
documentation for learning git commands.

68

https://tortoisesvn.net/
https://sliksvn.com/download/
http://subversion.apache.org/quick-start
https://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-cli-main.html
https://sliksvn.com/support/subversion-basics-using-check-out-update-check-in-commit/
http://svnbook.red-bean.com/
https://en.wikipedia.org/wiki/Grep
https://www.gnu.org/software/grep/manual/grep.html
https://en.wikipedia.org/wiki/Git
https://git-scm.com/doc
https://git-scm.com/doc

14.4 GitHub

Some resources that are useful while using GitHub are:

1. Creating a pull request

2. Opening an issue from code

3. Resolving a merge conflict on GitHub

69

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
https://docs.github.com/en/github/managing-your-work-on-github/opening-an-issue-from-code
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/resolving-a-merge-conflict-on-github

15 Additional resources

There are a number of further resources to help with contributions to R.

15.1 R Contributor site

Contains information for people interested in contributing to R core, including details for
the R Contribution Working Group, the R Contributors Slack workspace and upcoming R
Contributor events and meetups.

15.2 R developer page

The R developer page contains information about the plans of the R Core Team and details
on the R release process, as well as pointers to technical write-ups including the R blog.

15.3 R manuals

There are a number of manuals created and included with R installations. The original latest
and development versions of these are available from the R Manuals site. Note that the versions
included on the site are created with Debian Linux. While there may be some variation for
Windows and Mac manuals, most parts will be identical regardless of platform.

Particular manuals that might be of interest to R contributors are:

• R installation and administration - gives more details on building R from source.
• R internals - for those who want to read deeper into the internals R, for example, it con-

tains chapters on special data types used in the C code, internal and primitive functions
and details of graphics devices.

• R language definition - an in depth overview of the R language, helpful for developing
more advanced R knowledge from a user’s perspective.

There is a new re-styled R manuals site built with Quarto that has been produced to make
searching and navigating the manuals easier in a web browser. This site is automatically built
from the original manuals site using a number of scripts in the r-manuals GitHub repo.

70

https://contributor.r-project.org/working-group
https://contributor.r-project.org/slack
https://contributor.r-project.org/events/
https://contributor.r-project.org/events/
https://developer.r-project.org/
https://blog.r-project.org/
https://cran.r-project.org/manuals.html
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://rstudio.github.io/r-manuals/
https://github.com/rstudio/r-manuals

16 R Core Developers

This page lists the current and former members of the R Core Team who have write access to
the R source.

Current members of the R Core Team:

• John Chambers
• Peter Dalgaard
• Robert Gentleman
• Kurt Hornik
• Ross Ihaka
• Tomas Kalibera
• Michael Lawrence
• Uwe Ligges
• Thomas Lumley
• Martin Maechler
• Sebastian Meyer
• Paul Murrell
• Martyn Plummer
• Brian Ripley
• Deepayan Sarkar
• Duncan Temple Lang
• Luke Tierney
• Simon Urbanek

Former members of the R Core team:

• Friedrich Leisch (up to April 2024)
• Douglas Bates (up to March 2024)
• Martin Morgan (up to June 2021)
• Duncan Murdoch (up to September 2017)
• Seth Falcon (up to August 2015)
• Stefano lacus (up to July 2014)
• Guido Masarotto (up to June 2003)
• Heiner Schwarte (up to October 1999)

71

https://datascience.stanford.edu/people/john-chambers
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://statmath.wu.ac.at/~hornik/software.html
https://en.wikipedia.org/wiki/Ross_Ihaka
https://github.com/kalibera
https://github.com/lawremi
https://www.statistik.tu-dortmund.de/~ligges/
https://github.com/tslumley
https://people.math.ethz.ch/~maechler/
https://www.imbe.med.fau.de/lehrstuhl/sebastian-meyer/
https://www.stat.auckland.ac.nz/~paul/
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/plummer/
https://www.stats.ox.ac.uk/~ripley/
https://www.isid.ac.in/~deepayan/
https://www.stat.ucdavis.edu/~duncan/
https://stat.uiowa.edu/people/luke-tierney
https://urbanek.info/

The Contributors page on the R Project website also lists specific contributors outside the R
Core Team who have provided invaluable help by donating code, bug fixes, and documenta-
tion.

72

https://www.r-project.org/contributors.html

	Acknowledgement
	Introduction
	Overview of different ways of contributing to the base R Project
	Quick start to the guide
	How to contribute to this guide itself?

	R Patched and Development Versions
	The R source code
	Prerequisites
	Ubuntu
	Fedora

	Building R
	Linux
	Windows
	macOS

	See also

	Issue Tracking
	How to contribute to issue tracking?
	How to get a Bugzilla account?
	Navigating Bugzilla

	Searching for Bugs to Contribute to
	Detailed Bug Information
	Search By People
	Search By Change History

	Reporting Bugs
	What is a bug in R?
	What condition might not be a bug?
	Checking if a bug is already reported
	What are some places where you may find a bug?
	How to report a bug?
	Bug in the R-Core supported packages, their documentations, and/ or in the R language
	Bug in the non R-Core supported packages and/or their documentations
	Bug in a documentation website managed by the R Core Team

	Good practices in reporting bugs / Expectations of a good bug report
	Disagreement with a resolution on the bug tracker
	Examples of Bug reports submitted on Bugzilla or R-devel mailing list
	See also

	Submitting Feature Requests
	What is a feature request?
	How to submit a feature request?
	Examples of feature requests submitted on Bugzilla

	Reviewing Bugs
	How you can help to review bug reports?
	Preparing to review bug reports

	Classifying bug reports
	How to find a bug report or an issue to review?
	Example of a bug review submitted on Bugzilla
	See also

	Finding the Source
	Finding R source code
	Finding C source code
	See also

	Lifecycle of a Patch
	Introduction
	When do you submit a patch?
	What tools are required to submit a patch?
	How to prepare a patch?
	Using a git mirror

	Making good patches
	Submitting your patch for review
	Patch in response to a pre-existing issue or bug report
	Patch in response to an unreported issue or bug report

	Getting your patch reviewed
	How to review a patch?

	Leaving a patch review on Bugzilla
	Dismissing review from another core developer
	Acceptance or rejection of your patch
	Examples of patch reports on Bugzilla
	Examples of reviewing a patch
	See also

	Documenting
	Helping with documentation
	Reporting documentation bugs
	Example documentation bugs

	Guidelines for writing R help files
	Introduction to .Rd files
	R manuals
	Proofreading
	Helping with the R Development Guide
	See also

	Message Translations
	How translations work
	.pot files
	.po files
	.mo files

	How to contribute new translations
	Bulk Translations
	Current status of translations in R
	Helpful references

	Testing Pre-release R Versions
	Where to test?
	Virtual machine

	What can you test?
	Writing tests for R
	Benchmarks

	Where to Get Help
	Slack
	Mailing lists
	File a bug

	News and Announcements
	Blogs
	Conferences
	Journal
	Mailing lists
	Twitter

	Developer Tools
	Subversion (svn) client
	Globally search for a regular expression and print matching lines (grep)
	Git
	GitHub

	Additional resources
	R Contributor site
	R developer page
	R manuals

	R Core Developers

